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Autotaxin—an LPA producing enzyme with diverse functions
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Autotaxin (ATX) is an ecto-enzyme responsible for
lysophosphatidic acid (LPA) production in blood.
ATX is present in various biological fluids such as
cerebrospinal and seminal fluids and accounts for bulk
LPA production in these fluids. ATX is a member of the
nucleotide pyrophosphatase/phosphodiesterase (NPP)
family and was originally isolated from conditioned
medium of melanoma cells as an autocrine motility
stimulating factor. LPA, a second-generation lipid
mediator, binds to its cognate G protein-coupled recep-
tors through which it exerts a number of biological
functions including influencing cell motility and prolif-
eration stimulating activity. Some of the biological
roles of LPA can be mediated by ATX. However,
there are other LPA-producing pathways independent
of ATX. The accumulating evidences for physiological
and pathological functions of ATX strongly support
that ATX is an important therapeutic target. This
review summarizes the historical aspects, structural
basis, pathophysiological functions identified in mice
studies and clinical relevance discovered by measuring
the blood ATX level in human. The general features
and functions of each NPP family member will be
also briefly reviewed. The presence of the ATX gene
in other model organisms and recently developed ATX
inhibitors, both of which will be definitely useful for
further functional analysis of ATX, will also be
mentioned.

Keywords: autotaxin/G protein-coupled receptor/
lysophosphatidic acid/nucleotide pyrophosphatase/
phosphodiesterase.

Abbreviations: ATX, autotaxin; GPCR, G-protein-
coupled receptor; LPA, lysophosphatidic acid; LPP,
lipid phosphate phosphatase; lysoPLD, lysophospho-
lipase D; PA, phosphatidic acid; PAP, prostatic acid
phosphatase; PLA, phospholipase A.

Lysophosphatidic acid (LPA) is the simplest phospho-
lipid but induces many kinds of cellular responses
including cellular proliferation, prevention of apop-
tosis, cell migration, cytokine and chemokine

secretion, platelet aggregation, smooth muscle contrac-
tion, transformation of smooth muscle cells and neur-
ite retraction (1, 2). In addition, LPA has been
implicated in certain human diseases such as arterio-
sclerosis (3) and cancer cell invasion (4). It is likely that
most of the LPA actions are explained by G-protein-
coupled receptors (GPCR) specific to LPA, although
LPA was reported to activate the nuclear-type recep-
tor, PPARg (5). Currently, there are at least six identi-
fied GPCRs for LPA, LPA1�6 (6�13). From studies of
knockout mice and genetic disorders in humans, much
has been learned about the physiological roles of LPA
through a series of studies on LPA actions and its
receptors (14).

In contrast to the mechanisms of LPA action
through LPA receptors, the molecular mechanisms of
LPA production are poorly understood. LPA is pro-
duced under various conditions both in cells and in
biological fluids, where multiple synthetic reactions
occur. Recent studies identified that LPA is produced
via at least two routes (15, 16). In both routes LPA is
produced by a degradative reaction from phospho-
lipids (PLs). In biological fluids such as serum and
plasma, LPA is converted from lysophospholipids
(LPLs). In contrast, in cells such as platelets and
cancer cells, LPA is converted from phosphatidic
acid (PA). In the former route, PLs are first converted
to LPLs such as lysophosphatidylcholine (LPC) and
then to LPA (Fig. 1). In the latter route, phosphatidic
acid (PA) is first generated and then PA is converted
to LPA (Fig. 1). Recent studies revealed that a se-
creted enzyme named PA-selective phospholipsae A1

a (PA-PLA1a/LIPH) has a critical role by hydrolysing
PA to generate LPA (17) (Fig. 1). Previous studies
have indicated that the former route explains the
bulk LPA production in vivo, especially in blood and
that autotaxin (ATX), a multifunctional ecto-
phosphodiesterase, is responsible for the LPA produc-
tion (Fig. 1). In this review, we will mainly focus on the
functions as well as structural and biochemical proper-
ties of ATX. We also review recent clinical studies of
ATX and small molecules that modulate the functions
of ATX.

Brief history

ATX was originally identified as a tumour cell auto-
crine motility factor towards malignant cancer cells
and then purified from the conditioned medium of
A2058 melanoma cells, where it elicits chemotactic
and chemokinetic cellular responses at picomolar to
nanomolar concentrations in a pertussis toxin sensitive
manner (18). Sequencing the cDNA clone of ATX re-
vealed that ATX has high homology with a rat brain
nucleotide pyrophosphatase (PD-1a) (19) and to a F
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lesser extent with a rat neural differentiation antigen
(gp130) (20) and the plasma cell glycoprotein-1 (PC-1)
(21, 22), which has been demonstrated to have nucleo-
tide pyrophosphatase/phosphodiesterase (NPP) activ-
ities. Like PC-1, ATX hydrolyses nucleotide
pyrophosphatase substrates and its catalytic activity
was shown to be essential for stimulating effects on
cellular motility (23, 24). However, it was still not
clear how extracellular nucleotide hydrolysis can ex-
plain the motility-stimulating capacity of ATX. This
question was resolved by the identification of ATX
as a lipid mediator-producing enzyme.

The molecular basis of ATX function was not un-
covered until the identification of ATX as an enzyme
which produced a lipid mediator, LPA (25, 26). LPA is
one of the smallest and structurally simplest PLs
(Fig. 1A) but has numerous biological activities. LPA
stimulates proliferation and motility of many cell types
(1, 2). It also induces retraction of neurite outgrowth,
calcium ion mobilization, elevation and depression of
cAMP level and activates inositol phosphate metabol-
ism mainly through GPCRs specific to LPA (27). LPA
was originally identified as a hypertensive factor in a
soybean PL fraction (28). Later LPA was found to be
present in blood, especially in incubated plasma, and is
responsible for the hypertensive activity of the plasma
(29). Because freshly prepared plasma does not have
hypertensive activity, it is postulated that LPA is pro-
duced in the plasma itself (29). Further studies indi-
cated that LPA is produced from LPC and that
lysophospholipase D (lysoPLD) activity, which con-
verts LPC to LPA, is responsible for the LPA

production (29) (Fig. 1B). In 2002, two groups includ-
ing ours purified this enzyme from serum samples and
identified it as ATX (25, 26). LysoPLD activity was
also detected in the conditioned-medium of adipocytes
and later identified as ATX (30, 31). The following
experiments supported that LPA is a real product of
ATX. First, affinity of ATX for LPC is much higher
than that for nucleotides, suggesting that LPC is likely
to serve as a physiological substrate for ATX (25).
Second, the cell migration-stimulating activity of
ATX was dramatically enhanced by the presence of
LPC in the culture media (25). Third, the cell
motility-stimulating activity of ATX was absent in
LPA receptor (LPA1)-deficient fibroblasts (32). Taken
together, this data indicated that ATX exerts its activ-
ity through endogenous LPA production by its
lysoPLD activity. Today ATX is recognized as a
major LPA-producing enzyme in serum based on the
following observations: in human serum samples the
LPA level strongly correlates with the ATX level (33),
in ATX heterozygote mice both ATX protein and LPA
levels are just half of wild type animals (34, 35), and
both lysoPLD activity and LPA production were com-
pletely absent in ATX-depleted serum (34, 36). It is
believed that many biological roles of LPA will be
clarified through the studies of ATX as well as through
the studies of LPA receptors.

Structural features of ATX

ATX is a member of the NPPs [or ectonucleotide pyr-
ophosphatase/phosphodiesterases (ENPPs)] family
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Fig. 1 ATX produces LPA through hydrolysing other lysophospholipids. ATX hydrolyses the phosphodiester bonds in lysophospholipids. Two
types of lysophospholipids can be observed in biological fluids. One is the lysophospholipids with a saturated fatty acid, and the other is the one
with an unsaturated fatty acid. Since the majority of fatty acids at the sn-1 or sn-2 position consist of saturated and unsaturated fatty acids,
respectively, it is predicted that ATX produces LPA with a saturated fatty acid or an unsaturated fatty acid at sn-1 or sn-2 position, respectively.
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and is also referred as NPP2 (or ENPP2). The NPP
family consists of seven members (NPP1-7). Each con-
tains a catalytic domain, which is responsible for cata-
lytic activity (Fig. 2). In addition, like its closest family
members, NPP1 and NPP3, ATX has two additional
domains, a somatomedin-B-like domain and a
nuclease-like domain, which are located at the
N-terminus and C-terminus of the protein, respective-
ly. The somatomedin-B-like domain is rich in cysteine
residues and contains a RGD tripeptide motif that is
possibly involved in cell-extracellular matrix inter-
actions (37). The nuclease-like domain contains an
EF hand-like motif and is structurally similar to the
DNA- or RNA-non-specific endonucleases. However
it may lack catalytic activity because the amino acid
residues essential for the nuclease activity are mutated
(37). Recent mutagenesis studies have suggested that
all three domains are essential for catalytic activity,
although the precise role of the two non-catalytic do-
mains remains to be determined. It was shown that the
catalytic domain and nuclease-like domains are cova-
lently linked via a disulfide bond between C413 and
C805 (in human ATX), which is shown to be essential
for catalytic activity (38). It is also suggested that
the C-terminus of ATX has some role in the secretion
of ATX because mutant ATX lacking C-terminal
12 amino acid residues is not secreted (38). It was
once proposed that, like NPP1 and NPP3, ATX is a

type II membrane protein and is cleaved to form sol-
uble protein. However, recent studies have suggested
that hydrophobic residues at the N-terminus of ATX
functions as a signal sequence and thus ATX is a se-
creted protein (39, 40). ATX has four possible N-gly-
cosylation sites and N542-linked glycan was suggested
to be essential for catalytic activity (41). Finally, three
alternative splicing variants of human ATX have been
reported. Tetracarcinoma- and melanoma-derived
ATX is referred as ATXt and ATXm, respectively
(24, 23). PD-1a is known as a ‘brain-specific’ isoform
(42, 43). The differences in the catalytic activity of bio-
logical significance between each isoform are still
elusive.

Substrate specificities of ATX

ATX exhibits phospholipase D activity against LPLs,
thus once was named lysoPLD. No diacyl phospho-
lipids are hydrolysed by ATX. ATX hydrolyses vari-
ous LPLs including lysophosphatidylcholine (LPC)
(25), lysophosphatidylethanolamine (LPE) and
lysophosphatidylserine (LPS) (44). ATX also acts on
sphingosylphosphorylcholine (SPC) to produce
sphingosine 1-phosphate (S1P) (45), a similar bioactive
LPL to LPA. Thus, it is unlikely that ATX recognizes
the head group of a LPL. LPC is present in plasma at a
concentration of several hundred micromolar and is
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Fig. 2 The primary structures of NPP family protein. NPP family proteins can be classified into two groups. NPP1-3 contains multidomains
including somatomedin-B-like domain, catalytic domain and nuclease-like domain. In contrast, NPP4-7 contains only catalytic domain. Asterisk
indicates the catalytic centre responsible for the catalytic activity in each NPP family protein. Note that NPP6 and NPP7 are covalently attached
to plasma membrane by GPI anchor.
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mainly produced from PC on lipoprotein. In addition
to LPC, LPE and LPS are produced in serum in a
blood coagulation-dependent manner and are con-
verted to LPA by ATX (44). Thus, these LPLs are
also physiological substrates of ATX. In contrast
SPC concentration in plasma is too low (�mM) to con-
sider ATX as S1P producing enzyme. The catalytic
activity of ATX is significantly affected by the fatty
acid moiety of LPLs. Among saturated LPCs, ATX
preferably hydrolyses LPC with lauroyl-, myristoyl-
or palmitoyl-fatty acids (26). In addition, ATX hydro-
lyses LPC with unsaturated fatty acids more efficiently
than LPC with saturated fatty acids. For instance,
LPC with oleoyl-, linoleoyl- or arachidonoyl-fatty
acid is hydrolysed more efficiently than LPC with ste-
aric- or arachidic-fatty acid (26 and Aoki J., unpub-
lished data). Unsaturated LPC is probably a
physiological substrate because unsaturated LPA spe-
cies (18 : 2, 20 : 4 and 22 : 6-LPA) consist mainly of
LPA produced in incubated plasma (Aoki J., unpub-
lished data). Interestingly, the substrate preference of
ATX is significantly altered in the presence of some
divalent cations such as Co2þ or Mn2þ(46, 47). The
recent study of bacterial NPP (48) indicates that two
Zn2þ ions bind in the vicinity of the catalytic site, indi-
cating divalent cations (Co2þ and Mn2þ) modify the
substrate specificity of ATX by replacing the Zn2þ with
either Co2þ or Mn2þ. Finally, under anhydrous condi-
tions such as within an ether/H2O interphase, ATX
produces cyclic PA (cPA), an analog of LPA, from
LPC (36). cPA is detected as a physiological constitu-
ent of human serum (49), and displays anti-
proliferative and inhibitory activities towards cancer
cell invasion (50). The physiological significance of
cPA produced by ATX needs to be further determined.

General aspects of NPP family members

As stated earlier, ATX is a member of the NPP family.
NPP family members are classified into two
sub-groups depending on their primary structure.
ATX/NPP2, NPP1 and NPP3 form a sub-family and
consist of three domains, somatomedin-B-like, catalyt-
ic and nuclease-like domains. In contrast NPP4, 5, 6
and 7 consist of only a single catalytic domain. In spite

of their structurally related catalytic domains, each
NPP shows distinct substrate specificity and, thus,
functions (Table I). The genetic study on ‘tiptoe walk-
ing’ mice revealed that NPP1 regulates skeletal remo-
delling and calcification (51). NPP1 is involved in
catalysing nucleotides and generating pyrophosphate
(PPi), which inhibits bone calcification through block-
ing the growth of hydroxyapatite crystals (37). The
bone in NPP1 deficient-mice shows hypercalcification
(51), and conversely, the stable over-expression of
NPP1 is associated with severely reduced bone calcifi-
cation (52). In cohort studies, it was shown that the
prevalence of subjects carrying the polymorphic
K173Q of the human NPP1 allele was increased in
the diabetic group (53). In addition, mice over express-
ing human NPP1 in liver cells showed insulin resist-
ance and glucose tolerance (54). In vitro studies showed
that NPP1 interacts with insulin receptor (55, 56), and
that insulin signalling changes the sub-cellular localiza-
tion of NPP1 (57). These results suggest an intriguing
function for NPP1 in insulin resistance and type-2
diabetes, but further studies will be necessary to eluci-
date the molecular basis for these observations. NPP3
is the only molecularly defined white blood cell marker
that is exclusively expressed on resting and activated
basophils but not on any other peripheral blood cells
(58). NPP6 is highly expressed in kidney and brain,
and was recently shown to have lysophospholipase C
activity towards choline-containing glycerophospho-
diester including lysophosphatidylcholine, SPC and
glycerophosphorylcholine (59). NPP7 was identified
to have intestinal alkaline sphingomyelinase activity
(60). NPP7 can also catalyse LPC, and is thought to
be important for the digestion of dietary choline-
containing phosphodiesters (60). NPP4 and NPP5
(61) were identified by database search, but little is
known about their specific substrates or functions (62).

Roles of ATX in developmental stages

During the developmental stage, ATX expression is
first observed immediately rostral to the midbrain-
hindbrain boundary on embryonic day (E) 8.5, and
in floor plate and neural tube on E9.5 (63, 64). In
later stages, ATX is highly expressed in multiple tissues

Table I. Substrates and functions of NPP family protein.

Protein Substrate Functions References

NPP1 Nucleotides Inhibition of excessive bone calcification by producing pyrophosphate (37, 51, 52)
NPP2/ATX Lysophospholipids Vasculature and neural tube formation in embryos (34, 35, 65, 66)

Lymphocyte migration (74, 75)
Tumour progression (32, 76�78)
Development of neuropathic pain (92)

NPP3 Unknown Basophil marker (58)
NPP4 Unknown Unknown (62)
NPP5 Unknown Unknown (61, 62)
NPP6 Glycerophosphorylcholine Unknown (59)

Lysophosphatidylcholine
Sphingosylphosphorylcholine

NPP7 Sphingomyelin Unknown (60)
Lysophosphatidylcholine
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and organs such as choroids plexus and kidney
(63, 64). ATX deficient mice are lethal around
E9.5�10.5 with a number of defects including pro-
found vascular defects in the yolk sac and embryo,
abnormal lysosome formation in the visceral endo-
derm cells of the mouse yolk sac, aberrant neural
tube formation and developmental delay (Table II)
(34, 35, 65, 66). In vitro studies have indicated that
these ATX actions are mediated by LPA. Tanaka
et al. (34) showed that ATX and LPA are involved
in stabilizing blood vessels in mice allantois explants,
while Im et al. (67) showed ATX and LPA promote the
regression of blood vessels in the tube forming assay
using bovine and human endothelial cells. It was also
shown that ATX and LPA stimulate neurite outgrowth
in tissues isolated from ATX-null mice (66). However,
because none of the LPA receptor knockout mice re-
ported so far showed similar phenotypes to that of
ATX-null mice (see below), further analysis using
model organisms, such as zebrafish (see below), are
needed to know the precise modes of ATX actions
in vivo. It can be safely to be said that ATX exerts its
biological roles through its catalytic activity, because
the embryonic lethality similar to ATX-null mice was
also observed in mutated ATX knock-in mice, in which
the single amino acid responsible for the catalytic ac-
tivity of ATX was modified (68). These results show
that LPA produced by ATX evokes the signalling of its
cognate receptors, and thereby exerts multiple effects
in embryonic development. However, the phenotypes
observed in ATX deficient mice are much more severe
than the ones in LPA receptor deficient mice reported
so far; any single ðlpa�=�1 , lpa�=�2 , lpa�=�3 or lpa�=�4 Þ,
double ðlpa�=�1 lpa�=�2 , lpa�=�2 lpa�=�3 or lpa�=�1 lpa�=�3 Þ

and triple ðlpa�=�1 lpa�=�2 lpa�=�3 Þ KO mice are viable
with different phenotypes depending on their genotype
(Table II) (69�73). Thus, it is possible that the devel-
opmental functions of ATX can be mediated through
recently identified LPA receptors including LPA5

(11) and LPA6/p2y5 (13) or other unknown LPA
receptors.

Physiological and pathological aspects
of ATX

In the process of lymphocyte recirculation, lympho-
cytes interact with and transmigrate through high
endothelial venules (HEVs) in lymph nodes and other
secondary lymphoid tissue. It was recently shown that
ATX is abundantly expressed in HEVs and promotes
the lymphocyte-endothelial cell interaction (74, 75).
The lymphocyte trafficking into the lymphnodes was
moderately inhibited in mice injected with enzymati-
cally inactive ATX (74). Controversially, the traffick-
ing was not affected by the systemic depletion of
circulating ATX with anti-ATX monoclonal antibo-
dies (75). Thus, further analysis including condi-
tional expression or deletion of ATX in HEVs in
mice will be required to uncover the precise roles of
ATX signalling in the lymphocyte movement in lymph-
oid tissues.

The pathological functions of ATX in tumour pro-
gression are also being clarified in the light of LPA
producing enzyme. In vitro ATX was shown to pro-
mote tumour cell migration in a LPA-specific receptor
(LPA1)-dependent manner (32), and stimulate human
endothelial cells grown on Matrigel to form tubules
(76). In addition, a recent in vivo study showed that
over expression of ATX in mammary glands resulted
in breast cancer initiation and progression in mice (77).
Furthermore, over expression of ATX promoted the
bone metastasis of breast cancer cells (78). ATX is
highly expressed in malignant tumour tissues or cells
in Hodgkin lymphoma (79), glioblastoma (80, 81),
non-small-cell lung cancer (82), renal cell carcinoma
(83), hepatocellular carcinoma (84), breast cancer
(85) and thyroid carcinomas (86). In addition, ATX
concentration and activity were found to be elevated
in sera from follicular lymphoma (87). Taken together,
these results indicate that ATX signalling possibly
through LPA receptors is involved in the progression
of tumour malignancy as well as in angiogenesis and
ATX is a potent therapeutic target for cancer
treatment.

Table II. Phenotypes of LPA receptor deficient mice.

Receptors Lethality Phenotypes of KO mice References

LPA1 Semi-lethality Impaired suckling behaviour (69)
Decreased postnatal growth rate, reduced size (69)
Craniofacial dysmorphism (69)
Frontal hematoma (69)
Increased apoptosis in sciatic nerve Schwann cells (69)
Changes in neurotransmitters (schizophrenic-like pathology) (111)
Inhibition of the neuropathic pain (inhibition of demyelination) (88)
Proliferation of preadipocyte and inhibition of adipocyte differentiation (112, 113)
Cerebral cortex growth and folding ex vivo (LPA1/LPA2-deficient mice) (114)
Inhibition of renal tubulointerstitial fibrosis (115)
Inhibition of pulmonary fibrosis (116)

LPA2 Viable Inhibition of cholera toxin-induced secretory diarrhea (117)
Inhibition of tumour formation in an colitis-associated cancer (118)

LPA3 Viable Disruption of spacio-temporal blastocyst implantation in uterus (71)
LPA4 Viable Enhanced migratory response stimulated with LPA in fibroblasts (72)
LPA5 N.D. N.D.
LPA6/P2Y5 N.D. Hypotrichosis (human) (119, 120)

Autotaxin—an LPA producing enzyme

17

 at C
hanghua C

hristian H
ospital on Septem

ber 27, 2012
http://jb.oxfordjournals.org/

D
ow

nloaded from
 

http://jb.oxfordjournals.org/


The neuropathological roles of the ATX-LPA axis
have also been extensively investigated. LPC is origin-
ally known to induce neuropathic pain, such as behav-
ioural allodynia, thermal hyperalgesia and
demyelination (88). Recently it was shown that nerve
injury causes de novo LPA production (89), and that
LPA is responsible for the neuropathic pain through
the activation of a LPA-specific receptor (LPA1) and
the small G protein, Rho (90, 91). Recent analysis also
showed that the LPA production and neuropathic pain
induced by nerve injury were significantly attenuated
in ATX hetero knockout mice, suggesting that ATX
promotes neuropathic pain by converting from LPC to
LPA and activating LPA1 signalling (92). ATX is
highly expressed in choroids plexus and present in cere-
brospinal fluids, while the concentration of LPC in
cerebrospinal fluids is almost undetectable (J. Aoki un-
published data). During the occurrence of pain, the
source of LPLs as substrates for ATX is still unclear.
A possible candidate would be the blood stream, which
contains abundant LPC (several hundred micro
molar). Moreover, LPL such as LPS are synthesized
in activated platelets through the action of phospho-
lipase A2 and released into blood stream (15). Taken
together, it is possible that LPL are supplied from the
blood stream along with increased vascular permeabil-
ity caused by multiple stresses such as inflammatory
response and injury.

ATX in model organisms

Genes belonging to the NPP family are distributed not
only in vertebrates but also in invertebrates such as
yeast, nematodes and plants (Fig. 3). Even in bacteria,
NPP homologues exist and the crystal structure of
NPP protein from Xanthomonas axonopodis pv. citri
(Xac) was recently resolved (48). However, the

functions of each NPP family member in invertebrates
are totally unclear, since significant phenotypes cannot
be observed in invertebrates in which NPP family
genes are mutated or knocked down in our database
search (WormBase and Saccharomyces genome
database for nematode and yeast, respectively). In add-
ition, it is not expected that the functions and struc-
tures of NPP genes in vertebrates are conserved in
invertebrates due to the following reasons. First, the
sequence of NPP is not well conserved at the amino
acid level between in vertebrates and invertebrates. For
example, the amino acid similarity between human and
nematode NPPs varies between 18% (human NPP3
versus NPPd) and 33% (human NPP1 versus
Caenorhabditis elegans NPPa). Secondly, the number
of NPP family members in invertebrates is smaller than
in vertebrates and each NPP gene in invertebrates does
not match the one in vertebrates. In contrast, longer
forms of NPP family members such as NPP1-3 exist
only in vertebrates. For example, zebrafish contains all
NPP family members except for NPP3. The amino acid
similarity between human and zebrafish ATX/NPP2 is
close to 70%. In addition, lysoPLD activity was
observed in zebrafish NPP2 (Hama K. and Aoki J.,
unpublished data). Notably, all LPA receptors are
highly conserved in zebrafish. These results suggest
that LPA signalling is functional in lower vertebrate
model organisms such as fish, which could be useful
tools to elucidate the molecular basis of the ATX func-
tions in vivo.

Clinical aspects of ATX

Studies on ATX in clinical samples have provided im-
portant clues to the patho-physiological functions of
ATX. ATX is abundantly expressed in various bio-
logical fluids such as blood plasma, serum, urine, sem-
inal fluids and cerebrospinal fluids (93). As mentioned
earlier, accumulating evidences have identified a
number of patho-physiological functions of ATX.
This indicates that the levels of ATX concentration
and activity in clinical samples can be used for the
diagnosis of several diseases. In addition, ATX has
ideal features as a diagnosis marker; ATX is highly
stable and its level varies within a relatively small
range among healthy subjects (33). Recently high-
throughput assays for determination of ATX concen-
tration and activity for clinical laboratory testing were
developed (33). These studies have revealed a correl-
ation between the level of ATX and several patho-
physiological conditions (33, 94). ATX concentration
was significantly increased in the serum from patients
with chronic liver disease (33). This may reflect the
delayed metabolism of ATX in the liver based on the
following observations: serum ATX activity was sig-
nificantly elevated in liver injury in rats (94) and
ATX in circulating plasma was cleared by the scaven-
ger receptors of liver sinusoidal endothelial cells in
mice (95). Interestingly, it was found that the serum
ATX level is higher in women than men (33), and ATX
activity becomes even higher in women who are preg-
nant (96). In contrast, the serum ATX level was
decreased after operation in prostate cancer patients,

Fig. 3 NPP family genes in model organisms. Based on the genomic
and EST database for model organisms, we identified NPP genes in
human (h), rat (r), mouse (m), flog (x), fish (z), nematode (ce), yeast
(s) and plant (a). Note that each NPP genes in vertebrate model
organisms were clustered well.
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which seemed to reflect post-operative damage or nu-
tritional status (33). ATX expression is increased in the
cerebrospinal fluid of multiple sclerosis patients at the
protein level (97), and ATX mRNA was observed in
synoviocytes from rheumatoid arthritis patients (98).
In adipose tissues, ATX mRNA increased during the
adipocyte differentiation and was up-regulated in gen-
etically obese diabetic mice (db/db) (31). These results
indicate that ATX has some role in the progression of
tumours, liver dysfunction, pregnancy and obesity.

Non-enzymatic functions of ATX

It is likely that most of the ATX actions are mediated
through LPA production and consequent activation of
LPA receptors. It is intriguingly reported that ATX
facilitates morphological change in oligodendrocytes
in a catalytic activity-independent manner (99). A
novel functionally active domain referred to as the
modulator of oligodendrocyte remodelling and focal
adhesion organization (MORFO), mainly consists of
the nuclease-like domain but not the catalytic domain
of ATX (100). The MORFO domain contains an EF
hand-like motif, which was found to mediate a reorga-
nized assembly of focal adhesions and promotes pro-
cess outgrowth in post-migratory, premyelinating
oligodendrocytes (101). A cell surface ‘receptor’ can
be involved in this process to mediate the MORFO
domain function. Further studies will be necessary to
show whether the MORFO domain and/or other
unknown functional domains are involved in the
ATX functions in vivo.

Small molecule compounds for ATX study

Given the functions of ATX in a number of physio-
logical and pathological processes, potent inhibitors of
ATX are desired not only as feasible tools for ATX
studies but also as novel therapeutic leads. The struc-
tures of ATX inhibitors published so far are summar-
ized in the previous report (102). Among these
inhibitors, several compounds such as palmitoyl
a-bromomethylene phosphonate (BrP-LPA) and
NSC 48300 were shown to inhibit the growth of
tumour xenografts in mice (103) or the tumour cell
motility in vitro (104). These compounds inhibit ATX
activity in the micromolar range, and thus, other com-
pounds that can inhibit ATX-induced biological pro-
cesses much more efficiently are desired. An approach
to optimize ATX inhibitors utilizing the information
from the crystal structure of the bacterial enzyme Xac
(48), which shares 35% identity with the central cata-
lytic domain of ATX was undertaken (105). Studies on
crystal structures of ATX are definitely helpful for the
optimization of the current ATX inhibitors and even
in silico screening of ATX inhibitors.

A simple and highly sensitive assay for ATX activity
is necessary in order to employ high throughput
screening methods for diagnosis and drug discovery.
Fluorescence resonance energy transfer (FRET)-
based reporters such as CPF4 and FS-3 were recently
developed to detect ATX activity (106, 107). ATX
hydrolyses these fluorescent substrates very efficiently

compared with the conventional substrates such as
pNP-TMP; the Km values for CPR4 and FS-3 are
within the 1�10 mM range, whereas the value for
pNP�TMP is close to 1mM. Using CPF4, it was suc-
cessfully shown that ATX is specifically inhibited by
LPA and sphingosine-1-phosphate that can be pro-
duced by lysoPLD activity of ATX itself (106), demon-
strating the feasibility of the reporter in the study of
ATX.

Conclusions

The accumulating clinical and experimental evidences
for the crucial roles of ATX in pathological and
physiological conditions substantiate the role of ATX
as an essential therapeutic target. Moreover, the iden-
tification of ATX as the LPA producing enzyme in
plasma greatly promoted the understanding the mo-
lecular basis of ATX functions in a number of physio-
logical and pathological processes. Given the crucial
roles of ATX in LPA signalling, further studies on
ATX may reveal unexpected functions of LPA signal-
ling, which would be mediated through known and/or
unknown LPA receptors, and vice versa. However, a
number of questions still remain. One of the most fun-
damental issues is the identification of the signalling
pathway mediated by a specific LPA receptor involved
in ATX function in live animals. For example, the
phenotype of the abnormal angiogenesis observed in
ATX deficient null mice is quite similar to the one in
Ga13 deficient mice (108), but not to the one in the
other LPA receptor deficient mice generated to date
(Tables I and II). Since Ga13 is a known downstream
LPA receptor, it is expected that ATX produces LPA
and activates its cognate receptors leading to the pro-
motion of angiogenesis. Considering the broad sub-
strate specificity of ATX in vitro, it is also an
intriguing issue to identify genuine substrates of ATX
in vivo as well as the molecular basis for producing the
substrates. In addition, mechanisms responsible for
producing a number of LPC species with different
fatty acids should also be clarified to understand the
potency of ATX to produce ‘highly active’ LPA. The
acyl chain moiety of LPA produced by ATX directly
reflects the one of substrate LPC and biological effects
of each LPA molecule dramatically vary according to
its fatty acid chain. For instance, LPA with an unsat-
urated long-chain fatty acid preferably activates LPA
receptors such as LPA3 and LPA6/P2Y5 (13, 109). In
addition, the importance of LPA with an unsaturated
long-chain fatty acid is also implicated in the neointi-
mal formation in the vasculature (110). LPC in blood
plasma is mainly produced from lipoprotein, indicat-
ing the contribution of the enzymes involved in
lipoprotein metabolism in producing a variety of
LPC species as substrates for ATX. There have
not been convenient assays to detect each LPA
species with different fatty acid chains. Recent
advances in liquid chromatography and mass spec-
trometry may help to provide the means to measure
each LPA species directly leading to clarifying the
upstream, lysophospholipids-producing machinery or

Autotaxin—an LPA producing enzyme

19

 at C
hanghua C

hristian H
ospital on Septem

ber 27, 2012
http://jb.oxfordjournals.org/

D
ow

nloaded from
 

http://jb.oxfordjournals.org/


downstream, functions of each LPA species, aspects of
ATX.
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